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Abstract

Benthic invertebrates are the most commonly used organisms used to assess ecological

status as required by the EU Water Framework Directive (WFD). For WFD-compliant

assessments, benthic invertebrate communities are sampled, identified and counted. Taxa

× abundance matrices are used to calculate indices and the resulting scores are compared

to reference values to determine the ecological status class. DNA-based tools, such as

DNA metabarcoding, provide a new and precise method for species identification but cannot

deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecologi-

cal status assessment, we evaluated whether the results derived from presence/absence

data are comparable to those derived from abundance data. We analysed benthic inverte-

brate community data obtained from 13,312 WFD assessments of German streams. Broken

down to 30 official stream types, we compared assessment results based on abundance

and presence/absence data for the assessment modules “organic pollution” (i.e., the sapro-

bic index) and “general degradation” (a multimetric index) as well as their underlying

metrics.

In 76.6% of cases, the ecological status class did not change after transforming abun-

dance data to presence/absence data. In 12% of cases, the status class was reduced by

one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In

only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific devi-

ations were found and differences between abundance and presence/absence data were

most prominent for stream types where abundance information contributed directly to one

or several metrics of the general degradation module. For a single stream type, these devia-

tions led to a systematic shift in status from ‘good’ to ‘moderate’ (n = 201; with only n = 3

increasing). The systematic decrease in scores was observed, even when considering sim-

ulated confidence intervals for abundance data. Our analysis suggests that presence/
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absence data can yield similar assessment results to those for abundance-based data,

despite type-specific deviations. For most metrics, it should be possible to intercalibrate the

two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated

by standardised DNA-based methods should be further considered as a complementary

approach.

Introduction

Status assessment of freshwater ecosystems is frequently performed with biological indicators.

They are of particular importance in Europe, where the Water Framework Directive (Directive

2000/60/EC; WFD) requires EU member states to achieve ‘good ecological status’ for all water

bodies by 2027, defined as a ‘slight deviation from undisturbed conditions.’ Ecological status is

determined based on biological quality elements (BQEs), i.e., organism groups that reflect

aquatic ecosystem integrity by responding to various pressures rather than the intensity of a

single pressure. For rivers, the aquatic flora (phytobenthos and macrophytes), fish and, most

frequently, benthic invertebrates are monitored. Assessment methods are defined for individ-

ual stream types (ST), defined by their sizes, ecoregions, or catchment geology, differing in

their biota and resilience to stress [1]. The assessment procedure typically involves the stan-

dardised sampling of the BQE community, enumeration of taxa and estimating taxon abun-

dance. Based on the resulting taxa lists, metrics are calculated and compared to reference

values derived from undisturbed reference sites or through a modelling approach [2]. The

resulting score is then translated into an ecological status class (ESC) of high, good, moderate,

poor, or bad.

In compliance with the legal requirement of the WFD, all EU member states have devel-

oped nationwide assessment tools to monitor ecological status. While the same principles are

applied across the entire EU, details of the assessment systems differ among member states.

These differences are rooted in local monitoring traditions, different pressures affecting the

water bodies, and biogeography. Assessment systems of different countries have been intercali-

brated to enable comparisons of results [3].

The majority of national assessment systems rely on multimetric indices, i.e., combinations

of quantitative or qualitative descriptors of a certain aspect of an ecosystem based on the taxon

list, such as the number of taxa, share of sensitive species, or abundance of an indicator group

[1]. Though the WFD requires the use of taxon abundances, the individual metrics do not nec-

essarily use raw abundance data; many are based on taxon number, presence/absence of taxa,

or abundance classes.

The surge in DNA-based community assessment [4,5] has raised questions about whether

DNA-based identification can supersede morphological identification procedures and be used

for assessment systems under the WFD. The DNA-based characterisation of biotic communi-

ties can uncover diversity patterns at high taxonomic resolution [6,7]. However, it is generally

appreciated that PCR-based approaches, such as metabarcoding, cannot deliver reliable abso-

lute abundance data for Metazoa [8,9], although strong and positive correlations between read

number and biomass are sometimes found (e.g. [7,10,11]). To a lesser degree, the same has

been found for single-celled organisms [12,13]. Presence/absence data alone, as inferred reli-

ably using DNA-based tools, are incompatible with WFD requirements. However, given the

benefits of molecular biomonitoring tools in terms of taxonomic, spatial and temporal resolu-

tion, it seems worthwhile exploring the use of presence/absence data to infer established
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indices. While we are well aware that these tools were not designed for presence/absence data,

we think that the implementation of biomonitoring 2.0 could be achieved by two different

strategies [14]. First, molecular data could be used to simply replace the classical taxa × abun-

dance matrices with taxa × presence/absence matrices obtained by the molecular characterisa-

tion of communities. Second, an entirely new set of metrics and indices based on molecular

data could be trained and calibrated to determine pressure gradients and human impact.

While rebuilding the entire biomonitoring toolset, a formidable challenge, is likely the best

way to deliver more specific assessments at higher resolution, its implementation will be costly

and may thus be less attractive for policy-makers, requiring fundamental changes in legisla-

tion. Therefore, the ability to simply adapt existing tools to presence/absence data (which can

be obtained quickly and reliably using molecular tools, such as metabarcoding) should be

gauged [15,16]. Some studies of freshwater invertebrates [17,18] as well as case studies of

marine invertebrates [19] have suggested a general coherence of assessment results between

the two data types. However, systematic and large-scale studies directly comparing abundance

and presence/absence data are scarce.

We performed the first nationwide comparison of river ESCs calculated with abundance

data and with presence/absence data. Specifically, we hypothesise that (i) there is general con-

gruence between metric or module results based on abundance and presence/absence data and

(ii) the proportion of metrics that use raw abundance data determines how well presence/

absence-based assessment results (i.e., the assignment of ESCs) correspond with the results of

an abundance-based approach. We used a large dataset including over 13,000 samples from

German WFD compliance monitoring using the PERLODES system. PERLODES includes

metrics based on presence/absence, raw abundance and abundance classes, and is thus repre-

sentative of a variety of approaches developed for BQEs also in other countries [1]. In addition

to hypothesis testing, we describe type- and class-specific mismatches between assessment

results.

Materials and methods

German stream assessment methodology

The German assessment system PERLODES using benthic invertebrates [20,21] was selected

for our analysis. It is based on a national river typology with 30 river types. For each river type,

the assessment system uses two modules, each of which provides an ESC classification: organic

pollution module (OPM; based on a single metric, the saprobic index, SI) and general degrada-

tion module (GDM; integrating three to five metrics, depending on stream type (ST), see S1

Table). The GDM reflects the effects of various pressures, particularly habitat degradation, on

the benthic invertebrate fauna. A core element of this module is the German fauna index

(GFI), which relies on the abundance of specialist indicator taxa that mainly occur in near-nat-

ural or degraded habitats. It always accounts for 50% of the module’s result and is accompa-

nied by two to four additional metrics, one of which, in most cases, is the proportion of

Ephemeroptera, Plecoptera and Trichoptera specimens (EPT [%]). A third module, acidifica-

tion (AM), was only applied to two STs, where the recovery process from previous acidifica-

tion is ongoing. The final ESC is defined by the worst assessment result based on the OPM and

the GDM and receives a classifier from high (ESC1) to poor (ESC5).

The metrics of the PERLODES system use different components of the underlying taxa ×
abundance list. While some metrics (e.g., the number of Trichoptera species) use (i) raw taxa

numbers without abundance, others (e.g., the share of taxa preferring the hyporhithral zone)

use (ii) raw taxa × abundance matrices, and others (e.g., the SI) use (iii) taxon × abundance

Environmental assessments using presence/absence vs abundance data
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class matrices (see S1 Table; for details on metric and moduls calculation as well as abundance

classes consult [22]).

Data source and permissions

Access to biological monitoring data was granted by nine of the largest German federal states

(Bavaria, Baden-Wuerttemberg, Hesse, Lower Saxony, North Rhine-Westphalia, Saxony, Sax-

ony-Anhalt and Schleswig-Holstein) through the LAWA (German expert Working Group on

water issues of the Federal States). The total data set contained 13,401 samples obtained from

monitoring sites in 1985–2013, covering 30 STs [23].

Data processing

To compare assessment results based on abundance or presence/absence data, raw data were

used untransformed as well as transformed to presence/absence data for analyses in

ASTERICS v. 4.04 [22]. Abundances in the raw data were replaced by either 1 (presence) or 0

(absence) for this transformation. Of the 13,401 samples, 89 had to be excluded owing to errors

in the calculation of indices using ASTERICS, resulting in a total of 13,312 taxon lists. From

the ASTERICS output, the results for the three modules (OPM, GDM and [if relevant] AM)

and the final ESC as well as all relevant metrics for each ST (S1 Table) were exported to a .csv

file. Data were extracted from this output file using a custom python script (S1 File).

Statistical analysis

i) Correlation and slope analysis. The correlations between abundance and presence/

absence module results, individual metric results and final ESC were determined. Spearman’s

rank correlation coefficients were obtained using R [cor.test] (https://www.r-project.org)

because data were not normally distributed. A linear regression analysis was performed to

evaluate the relationship between abundance (x) against presence/absence (y) data to test for

systematic deviations, as indicated by slopes deviating from 1 (see S1 Fig) as well as Spearman’s

ρ values.

ii) ESC and metric deviations. To quantify deviations between assessment results for the

three modules and the final ESC from abundance data, a custom python script summarised

cases that remained unchanged (0) or deviated by one, two, or three classes. This was per-

formed for the entire dataset and for discrete ESCs to test if sites of a certain ESC were more

prone to changes (e.g., due to differences in taxa numbers). We focussed on shifts between

‘good’ and ‘moderate’ ESCs, as systematic deviations from these classes would confound efforts

to attain a ‘good’ ESC, as requested by the WFD.

iii) Deviation analysis. Deviations between abundance-based and presence/absence-

based ESC assessments were predicted to be most severe in STs where the GDM largely relies

on metrics that directly use abundance data (see S1 Table). To test this hypothesis, we esti-

mated the contribution of abundance-based metrics to the assessment result and related this to

the cumulative percentages of mismatches between abundance-based and presence/absence-

based assessment results (CAb). As the GFI always contributes 50% to the GDM, the contribu-

tion of any other metric (Cmetric) besides the Fauna Index was defined as follows:

Cmetric ¼
0:5

P
ðindividual metricsÞ � 1

Cmetric had values of 12.5%, 16.7%, 25.0%, or 100% (type 10 and 20) depending on the num-

ber of metrics used for the calculation (S1 Table). We then multiplied the value with the
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number of metrics that actually relied on raw abundance data (e.g. two of the five metrics for

ST16, i.e. Lit% and Pel%, see S1 Table) to obtain CAB, which had values of 0%, 16,7% or 25%.

Finally, we tested for a correlation between the magnitude of the deviation in the ESC based

on abundance or presence/absence data and CAB per ST using Spearman’s rank correlation.

The workflow for the analysis is summarised in Fig 1. All data are available on request.

Simulation of taxa lists

Within-site patchiness of macroinvertebrate communities can bias abundance estimates

inferred by using standard sampling protocols. To test if the deviations in ESC estimates based

on abundance or presence/absence data could be the result of non-representative sampling, a

simulation was performed accounting for uncertainties in abundance estimates: For a subset

of sampling sites, we produced 1000 replicates each by drawing abundances from a zero-trun-

cated Poisson distribution while retaining the original taxa list. The susceptibilities of SI, EPT

[%] and GFI to within-site variability of abundances were thus tested in 627 sampling sites in

which a change in ESC from ‘good’ to ‘moderate’ was observed in our previous analyses. For

these, metrics were calculated using a custom python script, as ASTERICS cannot handle large

Fig 1. Overview of the study workflow.

https://doi.org/10.1371/journal.pone.0226547.g001
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amounts of data. For each metric, a confidence interval spanning the 2.5th and 97.5th percentile

was computed from the simulated data using another custom python script and functions

from the numpy package. Results were plotted in R using the ggplot2 package.

Results

Overall congruence between abundance and presence/absence ESC

estimates

Ecological status class (ESC) estimates inferred from presence/absence data and abundance

data were congruent in 76.6% of all cases (10,191 of 13,312 comparisons; Fig 2, Table 1). Dif-

ferent ESCs were observed in 23.4% of all cases; 12% of presence/absence ESCs were one class

lower than originally inferred (i.e., a shift towards a worse ecological status) and 11.2% of pres-

ence/absence ESCs were one class higher (i.e., a shift towards a better ecological status). Differ-

ences spanning more than one ESC were found in only 0.2% of cases, including 19 sites

classified as worse and 15 sites classified as better by two ESCs.

We observed the strongest (>20%) bias towards a lower status class inferred from pres-

ence/absence data for stream types (ST)16 (small gravel-dominated lowland rivers; 37%,

n = 1300), ST21_N (lake outflows, lowlands; 33%, n = 97), ST21_S (lake outflows, highlands;

31%, n = 16) and ST1.1 (small and mid-sized rivers of the Calcareous Alps; 23%, n = 26) (Fig

2). By contrast, STs most often (>20%) assigned to one or two status classes higher were ST10

Fig 2. Deviations in ecological status class (ESC) estimates obtained from presence/absence data using ASTERICS for 13,312 samples from 30 German stream

types (y-axis, numbers in parentheses = data points). Green indicates the proportion of ESCs that remained identical, yellow indicates those that differed by ±1 and

orange indicates those that differed by ±2 ESCs. Deviations in the negative (worse) direction are shown on the left and deviations towards a more positive assessment

(better) are shown on the right side.

https://doi.org/10.1371/journal.pone.0226547.g002
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(very large gravel-dominated rivers; 34%, n = 169), ST20 (very large sand-dominated rivers;

29%, n = 295) and ST7 (small coarse substrate-dominated calcareous highland rivers; 25%,

n = 681). The lowest overall deviations in ESC estimates were observed in ST1.2 (large rivers of

the Calcareous Alps; 0% deviation, n = 23) and ST3.2 (mid-sized rivers in the Pleistocene sedi-

ments of the alpine foothills; 8% deviation, n = 52).

As predicted, ESC estimates in presence/absence-based and abundance-based assessments

were highly congruent in all STs, as reflected by a significant correlation for all STs (p< 0.001;

mean Spearman’s ρ = 0.86, range 0.72–1, see S2 Table for details).

Responses of individual modules

Similar to the results obtained for final ESCs, general degradation module (GDM) results

based on presence/absence and abundance data were identical in 74.9% (n = 9956) of cases

(Fig 3). GDM results decreased by one (-1) class in 13.1% (n = 1740) and by two classes (-2) in

0.1% of cases (n = 12), and increased by one (+1) and two (+2) classes in 11.8% (n = 1567) and

0.1% (n = 12) of all cases, respectively. Similarly, the highest deviations (>20%) in the GDM

results were observed, with a single exception, in STs where ESC estimates showed the highest

deviations (one and two status classes lower: ST16 (38%), ST21_S (38%), ST21_N (33%), ST1.1

(27%), ST17 (25%), ST9.1 (24%) and ST15 (22%); one and two status classes higher: ST10

(34%), ST20 (31%) and ST7 (26%)). The most congruent results were obtained for ST1.2 in

which only 9% of all GDM results decreased by one class. GDM results were responsible for

95.06% and 95.57% of the observed shifts in ESC, i.e. of similarly great importance for both

data sets.

Deviations in the organic pollution module (OPM) were moderate, with 91.7% congruent

results (Fig 4). For ST1.1, ST1.2 and ST4, results were identical; the highest deviations in the

OPM were observed in ST22 (marshland streams of the coastal plains; 18% of results differed).

Regression slopes describing relationships between abundance-based and presence/

absence-based metric results for the two most relevant GDM metrics (i.e., GFI and EPT [%];

both used in 28 of 30 STs) generally deviated from 1, where a low ecological quality corre-

sponded with higher scores (Fig 5A and 5B). Similarly, regression slopes describing relation-

ships between abundance-based and presence/absence-based OPM results were, on average,

less than 1 (mean = 0.92, min = 0.83 for ST3.2 and max = 1.1 for ST1.2, see Fig 6), with an aver-

age slope of 0.922.

General patterns of metric congruence in relation to data characteristics

As expected, metrics that use presence/absence of taxa (e.g. number of Trichoptera taxa) were

perfectly correlated when calculated with presence/absence data (Spearman’s ρ = 1, S3 Table).

Metrics that use abundance classes, such as the GFI, saprobic index, or rheo index, showed

generally strong and significant correlations (mean Spearman’s ρ = 0.93, range: 0.89–0.96)

between both data types. We observed the weakest correlations for metrics that rely on raw

abundance data, e.g., the relative proportion of individuals that prefer the epirhithral, metarhi-

thral, or hyporhithral zones (mean Spearman’s ρ = 0.60, range: 0.41–0.79).

We found a significant, positive correlation between the relative contribution of abundance

data to GDM results and the magnitude of the deviation (Spearman’s ρ = 0.52, p = 0.004, S2

Fig).

Class boundary deviations

We found that presence/absence-based ESC estimates differed in 23% of the observed cases.

Of major practical importance are shifts from ESC 2 (‘good’) to ESC 3 (‘moderate’, i.e. not
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meeting the requirements of the WFD). We found that 627 ‘good’ ESCs were classified as

‘moderate’, and 420 cases originally classified as ‘moderate’ were recovered as ‘good’ when

using presence/absence data (Table 1). The highest proportion of cases showing a shift from

‘good’ to ‘moderate’ belonged to ST16 (small gravel-dominated lowland rivers) with 201 mis-

classified cases (S4 Table). We observed frequent misclassifications of ‘bad’ ESCs as ‘poor’

(n = 445) as well as vice versa (n = 348).

Detailed analyses based on simulated abundance data for the 627 cases where presence/absence

data suggested ‘moderate’ instead of the original ‘good’ ESC indicate that this misclassification is

due to the GDM but not the OPM (S3 Fig). There was also substantial overlap in the simulation-

derived confidence intervals of assessment results and assessment results based on presence/

absence-based data, despite using a very conservative Poisson-distributed simulation approach.

Discussion

General deviation patterns

In agreement with hypothesis (i), our analysis revealed strong congruence between abundance

and presence/absence data for most modules and metrics. The slope of the regression, how-

ever, was<1.0 for all stream types (STs) with abundant sampling data, i.e., n> 100 data points.

This indicates that the metric value spectrum underlying ecological status class (ESC) calcula-

tion is narrower, i.e., biased towards intermediate values, when using presence/absence data.

Deviation of ESC was also substantially greater when metrics in the general degradation mod-

ule (GDM) relied to a larger degree on raw abundance data (S2 Fig).

Table 1. Deviation between presence/absence and abundance data for different assessment metrics. The diagonal displays the numbers of sampling sites for which the

results did not differ between the two data types.

Presence/absence data

Ecological status class 1 2 3 4 5

Abundance data 1 247 103 1 0 0

2 91 2922 627� 7 0

3 1 420 2564 523 11

4 0 5 532 2187 348

5 0 0 9 443 2271

Presence/absence data

Organic pollution 1 2 3 4 5

Abundance data 1 821 147 0 0 0

2 165 8758 307 0 0

3 0 428 2597 5 0

4 0 0 49 31 1

5 0 0 0 2 1

Presence/absence data

General degradation 1 2 3 4 5

Abundance data 1 698 263 3 0 0

2 162 2295 616 6 0

3 2 426 2521 517 7

4 0 5 534 2175 344

5 0 0 9 445 2267

� indicates the number of stream assessments that would fall outside the threshold criterion (i.e. at least ESC = 2) after transformation. The high deviation is due to

stream type 16.

https://doi.org/10.1371/journal.pone.0226547.t001
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Over 75% of the ESCs remained unchanged after the transformation of abundance data to

presence/absence data, while less than 25% of cases were classified as one ESC lower or higher.

This shift can typically be explained by changes in the GDM while the organic pollution mod-

ule (OPM) is more robust. Also, our simulation experiments demonstrate that the GDM is

more sensitive to variation in abundance data: In about 95% of cases the ESC is determined by

the GDM. In particular, the systematic shift from good to moderate (ESC2 to ESC3) has

immense policy implications because the latter indicates a failure to comply with the WFD

requirements. Therefore, we analysed this class boundary in detail and simulated Poisson-dis-

tributed confidence intervals for abundance data. While about 50% of the presence/absence

data fell within the confidence interval, a high percentage of data points were in a lower cate-

gory (S3 Fig). The observed deviation suggests that there are, on average, slightly greater differ-

ences between abundance-based and presence/absence-based assessments than the difference

in results obtained by two independent investigators performing morphological identification

(about 16%[24]).

Specific deviation patterns

We found a notable bias when comparing presence/absence and abundance data for ST16

(small gravel-dominated lowland rivers), for which 1,300 data points were available. This is

entirely due to the GDM, which is composed of five metrics for ST16 (S3 Table). While strong

Fig 3. Deviations in general degradation module (GDM) results calculated from presence/absence data using ASTERICS for 13,295 samples from 30 German

stream types (y-axis, numbers in parentheses = data points). Green indicates assessment values that remained identical, yellow indicates those that differed by ±1 and

orange indicates those that differed by ±2 classes. Deviations in the negative (worse) direction are shown on the left and deviations towards a more positive assessment

(better) are shown on the right side.

https://doi.org/10.1371/journal.pone.0226547.g003
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positive correlations between data types were found for the GFI, the number of Trichoptera

taxa and EPT [%], the results for proportions of pelal-inhabiting (mud-dwelling) and littoral

taxa (typical for shallow areas in lentic waters) were poorly correlated (ρ = 0.41 and 0.56). This

can be explained by the large number of mud-dwelling and littoral taxa, albeit with low abun-

dances, and the fact that both metrics use raw abundance data (S3 Table, red shading). As pres-

ence/absence data equalise proportions, these taxa disproportionately contribute to the index,

consistent with the expectations of hypothesis (ii). High abundances of mud-dwelling and lit-

toral taxa are considered atypical and/or bad for this ST, indicating a strong impact of flow

modification and fine sediment entry. Transformation to presence/absence data systematically

upweighted the importance of the low-abundance mud-dwelling and littoral taxa, leading to

the systematically lower scores. We observed the same effect for ST21_N and 21_S (lake out-

lets), for which only three core metrics are used to calculate the GDM (EPT [%], lake outlet

typology index [equivalent to the GFI] and proportion of phytal taxa). However, the sample

sizes were very low for these STs. Although only the proportion of phytal taxa (macrophyte-

associated taxa) uses raw abundance data, this indicator has few core metrics (S3 Table), and

account for 25% of the overall assessment result, which equals the impact of both abundance-

based metrics combined in ST16. Hypothesis (ii) is further supported by the results for ST18

(small loess and loam-dominated lowland rivers), where 19% of the cases had a lower ESC,

which is about half as many as in the other types analysed. For this ST, the proportion of

Fig 4. Deviations in organic pollution module results calculated with presence/absence data using ASTERICS for 13,312 samples from 30 different German stream

types (y-axis, numbers in parentheses = data points). Green indicates assessment values that remained identical, yellow indicates values that differed by ±1 and orange

indicates value that differed by ±2 classes. Deviations in the negative (worse) direction are shown on the left and deviations towards a more positive assessment (better) are

shown on the right side.

https://doi.org/10.1371/journal.pone.0226547.g004
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littoral taxa is also used to calculate the GDM, but here four core metrics are used in the calcu-

lation and therefore the impact is only 12.5% (with 50% always owed to the GFI), considerably

alleviating the effect. The high deviation in ST1.1 (23%) might be related to the low number of

data points (n = 26).

We also found a notable bias for ST6 and 7 (small fine and coarse substrate-dominated cal-

careous highland rivers), where presence/absence data performed systematically better than

abundance data (20% and 25%, respectively). Unlike ST16, a high proportion of epirhithral

taxa is typical for these STs, thus pushing the values towards more positive classes. Typically,

presence/absence data overestimate this proportion, leading to the results being systematically

higher for the metric and thus the GDM. The effect might be weaker for the same reason as for

ST18 because it only contributes 12.5% to the calculation of the GDM.

For ST10 and 20, many samples were evaluated more positively with presence/absence data

than with abundance data (34% and 29%, respectively). Since there were almost no deviations

when looking at the OPM, it is again obvious that the data type for this module has the greatest

influence on ESC results. Since the only core metric used in these STs is the Potamon type

index, for which results were highly correlated (ρ = 0.94 and 0.95), the notable discrepancy has

to be a class (border) assignment issue because correlations for the GDM were significantly

lower (ρ = 0.84 and 0.87) than those for the underlying metric.

Fig 5. Regression analysis of presence/absence (y-axis) and abundance-based data (x-axis) for two metrics of the general degradation module: A) German fauna index,

B) EPT[%].

https://doi.org/10.1371/journal.pone.0226547.g005
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Fig 6. Regression analysis of presence/absence (y-axis) and abundance-based data (x-axis) for the German saprobic index (organic pollution module,

OPM).

https://doi.org/10.1371/journal.pone.0226547.g006

Environmental assessments using presence/absence vs abundance data

PLOS ONE | https://doi.org/10.1371/journal.pone.0226547 December 23, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0226547.g006
https://doi.org/10.1371/journal.pone.0226547


For ST5.1 (small, coarse substrate-dominated siliceous highland rivers), we obtained high

correlations for all core metrics and even the GDM (ρ values of 0.95, 0.95, 0.96 and 0.97) while

the overall results for the GDM show a high proportion of deviating values (20%). Here, again,

we suspect that this is due to a class (border) assignment issue. In agreement with our initial

hypothesis (ii), in most cases where presence/absence-based results differ from abundance-

based results, one or more metrics directly relied on the abundance data used to calculate the

GDM, leading to a positive correlation (see S3 Table). The class border issue, however, is inde-

pendent of this.

Limitations and prospects of DNA metabarcoding for aquatic

bioassessment

Molecular methods can generate highly resolved taxa lists in a standardised way and in a short

time [25]. Furthermore, they unlock a wealth of otherwise inaccessible information, such as

information on hidden diversity [26,27], and can be used for the early detection of rare and

protected or alien invasive species [28,29]. However, these types of data come with additional

sources of variation that need to be considered [14]. For example, metabarcoding approaches

can identify ingested prey items, thereby generating much larger and diverse taxa lists. These

highly resolved taxonomic data are not necessarily applicable to standardised assessment

methods, such as those of the WFD; for instance, chironomid species, which can easily be

identified using DNA-based data, are not considered in the assessment systems of most coun-

tries [30]. Yet, from this high-resolution data all possible data sets required by any currently

used WFD assessment method can be derived, for instance to comply with operational taxa

lists at genus-level.

Most importantly, DNA metabarcoding can only be used to roughly infer abundance data.

Abundance is a key parameter in ecology and is of great value for biomonitoring. Without

abundance or biomass data, population trends cannot be picked up. Therefore, abundance as

well as other quantitative data such as biomass, size etc. per se have immense value for under-

standing ecological dynamics and for establishing management or conservation strategies and

need to be considered also in the future for various purposes (e.g. [31,32].

Our results, as well as those by Beentjes et al. [18] for Dutch lentic and lotic freshwaters and

Wright-Stow and Winterbourne [17] for New Zealand streams, indicate that the inability to

generate abundance data using DNA-based methods is of limited concern for ecological status

inferences, as many metrics are based on incidence data. For metrics based on raw abundance

data or on abundance classes, frequent minor deviations and occasional major deviations can

be expected and this study showed that especially for those using raw abundance data (S3

Table) this is a concern. In the case of Dutch freshwaters, the calculated Ecological Quality

Ratios (EQRs) use abundance information only to a minor extent [18]. Also, this information

is provided in form of abundance classes, never as raw abundance information. This explains

the generally higher agreement observed for the comparisons. While in the case of German

streams the variation is at least in several cases substantially greater, available information can

be used to train machine learning algorithms in order to calibrate both data types. The power

of supervised machine learning for biomonitoring purposes and data intercalibration has been

shown several times [33–36], yet, it is subject for future analyses to test the power on such data

sets.

It should be noted that there are a few other incompatibilities between traditional and

DNA-based methods. Some taxa are not detected due to primer bias [7,8] and gaps in refer-

ence databases. For the German operational taxa list, however, almost 90% of species-level rec-

ords have barcodes. For most other countries in Europe, the thresholds for operational taxa
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lists are quite high (>60% on average; [37]). A study of diatoms by DNA metabarcoding and

traditional morphological approaches has shown that even with only 10% of taxa available,

rather robust ESC results are possible [12], but country-specific deviations have also been

reported [38]. An additional layer of variation may be due to differences in sample size. For

WFD-conform macrozoobenthic-based assessment in Germany, typically a standardised

number of specimens is picked and determined from the sample, which is either 350 or 700

specimens [20]. This is different in other countries and DNA metabarcoding of entire samples

without prior sorting may thus lead to stronger deviations than the one described our in silico
comparison here.

Therefore, we propose to test our approach in a more systematic fashion by simultaneously

sampling, processing and identifying taxa with both the traditional method and the DNA-

based method to validate the molecular method across STs or water bodies, in general. By this

approach, gaps in reference libraries can also be filled. This will also demonstrate the capacities

of different sampling strategies as well as different laboratory and bioinformatic approaches to

process standard samples. Likewise, optimisation of the molecular workflow will reduce wait-

ing time and overall costs, and thus make molecular approaches more attractive to policy-

makers and aquatic ecosystem managers [25,39]. In a next step, we will analyse how well ESC

estimation based on presence/absence data performs across different national WFD-compliant

tools and determine how the limitations of different molecular tools affect ESC/EQR inference.

Thus, we aim to gauge whether our approach can be universally applied across Europe, as sug-

gested by the results of this study. We are aware that the implementation of molecular tools

will come at a cost and requires the utmost scientific rigour, but this is crucial for generating

new data and comparing these with available data. So far, costs are in the same order of magni-

tude as for as traditional lab and identification procedures [7]. And if abundance estimates are

continued to be obtained via traditional inspection or alternatively automated image recogni-

tion [40], no substantial cut in costs can be expected. However, the central incentive for

including also genetic data should be the fundamentally improved resolution down to species

or even population level [41] that can be obtained in a standardised fashion. While we explic-

itly encourage the development of new metrics and indices that make use of the full potential

inherent in metabarcoding data [36], we emphasise the importance of properly evaluating the

potential to link metabarcoding data to established indices and relate them to existing data.

This should ideally be done in parallel with ESC inference based on current methods to

develop well-founded and properly validated approaches that can be accepted both scientifi-

cally and from a water management perspective.

Conclusions

Our results indicate that stream ESCs in Germany inferred from presence/absence data are, to

a high degree, congruent with ESCs inferred from abundance data. However, the direct trans-

formation of abundance-based ESC assessment into a presence/absence-based approach is not

possible and will require a calibration e.g. by using supervised machine learning, based on

direct comparisons of metabarcoding and traditional morpho-taxonomical data.
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axis) metrics.

(PDF)

Environmental assessments using presence/absence vs abundance data

PLOS ONE | https://doi.org/10.1371/journal.pone.0226547 December 23, 2019 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226547.s001
https://doi.org/10.1371/journal.pone.0226547


S2 Fig. Abundance metric analysis. Deviation of the observed classification in the ecological
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(PDF)
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that do not use abundance data are shown in green, metrics that use abundance classes are
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ditions for European streams. 2004; 516: 15.

3. Poikane S, Zampoukas N, Borja A, Davies SP, van de Bund W, Birk S. Intercalibration of aquatic eco-

logical assessment methods in the European Union: Lessons learned and way forward. Environ Sci Pol-

icy. 2014; 44: 237–246. https://doi.org/10.1016/j.envsci.2014.08.006

4. Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ. Environmental barcoding: a next-generation

sequencing approach for biomonitoring applications using river benthos. PloS One. 2011; 6: e17497.

https://doi.org/10.1371/journal.pone.0017497 PMID: 21533287

5. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity

assessment using DNA metabarcoding. Mol Ecol. 2012; 21: 2045–2050. https://doi.org/10.1111/j.1365-

294X.2012.05470.x PMID: 22486824
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